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Summary. A self-consistent field method is applied to compute directly in mo- 
mentum space the electronic structures of the bound anions Li- and F-  at the 
Hartree-Fock level. The convergence towards the Hartree-Fock limit, starting 
from STO-3G, 3-21G, 3-21+G and 6-311+G AO's, is stable and monotonous. 
Substantial improvement in the quality of the anion orbitals is noted already after 
one iteration. Particularly interesting is the efficiency with which the method 
modifies and improves the shape of the trial functions. 
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1 Introduction 

Stable (or bound) anions are species that lie energetically below the ground state of 
their parent neutral [1, 2]. Their outermost orbitals correspond to diffuse electron 
densities, orbital energies close to the ionization limit, and low average values of 
kinetic energy. A theoretical description of isolated atomic and molecular anions 
requires special care (level of theory, large basis sets, etc.) that is not usually needed 
for the corresponding neutral and cationic species. The Hartree-Fock (HF) model, 
for example, often predicts anions that are not stable compared to the neutral 
atom, which points to the need for correlation corrections. However, within the 
conventional LCAO-MO scheme, the limitation of the atomic basis sets is by far 
the most significant source of error, which reflects the inherent difficulty of 
describing the diffuse nature of the electron density of anionic species. To perform 
accurate calculations on anions, large basis sets are constructed by supplementing 
the valence atomic basis sets with diffuse [3, 4] or floating I-5] atomic functions. 
The construction of such bases is often performed using sequences of even tem- 
pered basis functions I-6]. 

The momentum space approach I-7-9] has proved to possibly bring improve- 
ments in the description of the basis sets used for anions. As a matter of 
fact, the momentum and direct-space functions and equations are related by 
a Fourier transform and contain the same information, but express it differently. 
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For instance, in momentum space the emphasis is put on the valence part of the 
electronic structure [10] since diffuse orbitals in position space which have in 
momentum space most of their amplitude concentrated around the origin. In an 
exact scheme this has no effect on the results, while in an approximate treatment it 
can be used advantageously for a better description of the valence region, which is 
precisely where problems arise in the case of anionic species [11]. 

Attempts to solve the HF equations for atoms [7, 12-16] and small molecules [8, 
9, 17-19] directly in momentum space have shown definite improvements on the 
resulting wave functions. Considering the importance of good atomic and molecular 
orbitals, and thus basis sets, for post-Hartree-Fock treatments we study in this paper 
the improvements brought by a direct momentum space scheme on the wave 
functions of four- (Li-) and ten- (F-) electron ions. From these specific applications, 
we tentatively draw some general considerations about calculations on anions in 
momentum space. A brief summary on the momentum space closed-shell atomic HF 
equations and the momentum space SCF scheme is given in the next section. 

2 SCF momentum space method 

In momentum space, the closed-shell atomic HF equations describing a m-electron 
atom of nuclear charge Z writes, in atomic units, as: 

~bi(p) - ( h i (  p - q) + 2 j~l W*(q) qbi(p - q) 

m/2 1 ~ dq 
-- ~. T2~2 ;-2-i W*(q)~bj(p- q) = ei(oi(p), i= 1,2, '"m/2.  (1) 

j = l  

ei stands for the orbital energy of the ith momentum-space orbital qS~(p). And 
W~,j(q), the convolution product of ~bi(p) and 4~j(p), is defined as: 

= fdp 4)*(P) ~bj(p - q). (2) Wij(q) 

As in position space, the solution of the HF equations in momentum space 
requires an iterative procedure which basically includes four steps: 

Step 1. Initialization of the procedure. 
A set of trial functions is chosen, and the corresponding orbital energies are 
calculated directly in momentum space: 

= fdpq)*(p)[Fq),](p), i= 1,2,...m/2. (3) 

[F4)i] (p) stands for the left-hand side of the momentum Space HF equation, Eq. (1). 

Step 2. Iteration of the wavefunction. 
When functions and energies are known for the kth iteration, the functions 
at the next iteration are obtained according to a method originally proposed by 
Lassettre [7] and Navaza-Tsoucaris [8] (a detailed description of the method can 
be found in Ref. [20]), but modified to deal with non-bound states, 

qb!k+~)(p) = [ ~ - -  E~k)]-~ { f dq V!~)(q) ~b~k)(p -- q) + Cc~!k)(p)}, (4) 
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where (k) (k) V~j (q)~bi (p - q) stands for the left-hand side of Eq. (1), the kinetic term 
excepted. 
A translation of the energy origin is performed by fixing C positive in the next 
expression: 

= c ,  (5) 

to avoid singularities in the [pe/2 - E! k)] term when the orbital energies e! k) are 
either positive (corresponding to non-bound states) or too close to zero. In all other 
cases, C is zero. The orbitals are reorthonormalized after each iteration. 

Explicit calculations through first iteration, k = 1 in Eq. (4), are not only 
possible with gaussians, but also relatively simple. This, in particular, allows to use 
trial orbitals ~b!°)(p) coming from standard quantum chemistry packages and 
introduce them directly in the iterative scheme. Unfortunately, the transcendental 
functions in terms of which the ~b! 1)(p) are expressed at the end of the first iteration 
(especially the convolution product) do not lead to closed-form expressions for 
these integrals and a numerical procedure is therefore needed. This constitutes 
a barrier to carry out further iterations to improve the orbitals by approaching the 
HF limit. In order to carry out further iterations, we propose a compromise 
between a fully numerical scheme and the simple first iteration approach. The 
scheme is based on the fact that at the end of each iteration the ~b!k)(p)'s entail 
the main qualitative characteristics of the exact solution and most importantly the 
right asymptotic decay. The idea is thus to fit the iterated analytical functions 
~9!k)(p) obtained at the kth step on a finite set of gaussian functions (a set of nine 
gaussians allows a satisfactory fit with low variance about I0-7) and then use these 
fitted functions as a new set of trial functions ~)~(k)(p). The advantage is twofold. 
First, with exponents and linear coefficients specific for each orbital, energies and 
functions are quickly improved. Second, the problematic convolution products and 
integrals are efficiently computed in terms of the gaussian functions obtained to 
represent the ~b~(k)(p)'s. At the end of the whole process, properties which do not 
include convolution products in their expression (e.g. (p-1  >, (p  >, < p2 >, etc.) are 
obtained by direct numerical integration of the last iterated orbitals o~k)(p) to 
benefit from the functional characteristics imparted by the momentum-space 
iteration. The details of the analytical and numerical steps involved in the 
momentum-space procedure are given in Ref. [21]. 

Step 3. Calculation of energies of the iterated functions. 
The orbital energies are calculated in momentum space using Eq. (3). 

Step 4. End of iterations. 
Step 2 and 3 are repeated until a given convergence (energy, physical property 
or mean-squared deviation between successive iterated functions) threshold is 
reached. 

3 Results and discussion 

In their ground states, Li- and F -  are both closed-shell atomic negative ions, with 
ls22s 2 and ls22s22p 6 singlet electronic configurations, respectively. The atomic 
orbitals of Li- and F -  are computed according to the momentum-space SCF 
procedure described above, trial functions are obtained from the Gaussian 90 
program 1-22]. 
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Table 1. Starting with trial functions (0) expressed in standard basis sets of increasing quality, a first iteration 
(1) is performed for Li-. The atomic orbital properties are given in atomic units, and to help comparison near 
H F  limits [23, 24] are reported 

ls 2s 

Li- iteration <p- 1 > 8kin 8 <p- 1 > 8kin 8 Er  Vi 

STO-3G 
0 0.66059 7.0260 
1 0.66444 6.9447 

3-21G 
0 0.65864 7.1418 
1 0.65320 7,1215 

3-21 + G  
0 0.65502 7.1427 
1 0.65829 7.1257 

6-311 + G  
0 0.65660 7.2232 
1 0.65655 7.2243 

[23] 0.65644 7.2261 
[24] - 7.2261 

1.9686 3.1212 0.80691 +0.10225 -7.2133 -1 .9209 
2.2307 4.3811 0.31916 +0.01547 -7 .4086 -2 .0200 

2.2384 4.6021 0.30107 +0.00643 -7 .3668 - 1.9898 
2.3188 5.6920 0.20543 -0.01077 -7 .4270 -2 .0137 

2.2958 6.3672 0.23659 -0.01401 -7 .3769 -1 .9997 
2.3320 6.5552 0.19833 -0.01477 --7.4266 --2.0140 

2.3213 6.2869 0.20505 -0.01422 -7.4275 - 1.9999 
2.3238 6.4914 0.20135 -0.01497 -7 .4282 -2.0003 

2.3228 6.4347 0.20216 - 0.01453 - 7.4282 - 2.0000 
2.3228 - 0.20215 - 0.01454 - 7.4282 - 2.0000 

In order to assess the orbital quality over a large domain of momentum, some 
physical properties of the orbitals ~b !k)(p) are computed at each iteration k. They are 
the orbital energies ei(i = ls,2s or 2p), total energy (ET), kinetic energies 
~kin.i(i = lS, 2S or 2p), Virial ratio (Vi) which measures the overall quality of the 
orbitals, and the (p-1)~(i  = ls,2s or 2p) terms which probe preferentially the 
region of low momenta: 

(p- l >~ = f dp (o * (p) I ~14~(p). (6) 

The AO's computed in direct space with the Gaussian 90 program for the 
standard STO-3G, 3-21G, 3 -21+G and 6-311+G bases are then used as trial 
functions in a one-momentum space iteration. The corresponding physical proper- 
ties are compared with the near HF values calculated with the STO expansion of 
Clementi and Roetti [23] expressed in momentum space, and those calculated with 
the numerical direct-space SCF program of Froese Fischer [24]. All quantities 
being listed in Tables 1 and 2, respectively for Li-  and F- .  The near HF values for 
the anions reflect significantly more diffuse charge densities for the valence (2s and 
2p) orbitals than for the parent neutral [23]. Indeed, the valence orbitals of Li-  and 
F -  have low orbital energies, low average values of kinetic energy and high values 
of the ( p -  1 > term. 

As seen in Tables 1 and 2, it is only when diffuse functions are included in the 
basis sets that satisfactory values are obtained with the LCAO-SCF scheme. This 
because the iterative procedure based on the variational principle selects coeffic- 
ients that ensure the lowest possible total energy out of the available degrees of 
freedom. It is also due to the fact that the exponents in the standard bases have 
been tailored to the neutral species and are not optimal for the anion. The minimal 
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Fig. 1. Graphs,  with  respect to the 
m o d u l u s  of  the m o m e n t u m  (p), of 
the a tomic  orbitals  of F -  after one  
i teration ( ). The graphs of  the 
trial funct ion ( . - . - ) ,  expressed in 
the 3 -21G basis, and  of  the near  
Har t ree -Fock  l imit funct ion [23] 
( - - - - )  are added to appreciate  the 
i m p r o v e m e n t  brought  by the 
i teration 

STO-3G basis [253 gives very poor results, even from a qualitative point of view 
since the outermost orbital leads to a positive eigenvalue or a non-bound state. The 
split-valence 3-21G basis [263 does not change the picture significantly, whereas 
significant improvements are observed with the 3-21 + G  basis [4] which includes 
diffuse functions. It might be worth adding that the 3-21 + G  basis, which yields 
results comparable to the 4-31 + G  basis [33, was in fact optimized on the singlet 
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ground states of first row anions, and thus on Li-  and F- .  Results close to the near 
HF limit are obtained with the very good diffuse split valence 6-311 + G basis [4]. 

One momentum-space iteration results in dramatic improvements, as can be 
read in Tables 1 and 2 and seen in Fig. 1. Even if the trial functions are expressed in 
the rather limited STO-3G and 3-21G bases, a nearly correct description of the 
bound nature of the outermost orbitals is obtained after one single iteration. The 
improvements occur in both core and valence levels, but the most significant 
changes are imparted to the valence orbitals. The orbital energies are always 
corrected in the right direction, whatever the energy level and/or the ion. For 
instance, e2p(3-21 +G)  of F - ,  too low in energy ( -  0.18434 au), is corrected to 
-0.18243 au after one iteration. Similarly, eep(6-311+G) of Li- ,  too high in 

energy ( -  0.01422 au), is corrected to - 0.01497 au again after one iteration. It 
must also be stressed that these variations occur for quite small changes in energies 
in the case of the more extended bases as well as for larger variations for the small 
bases. That the corrections always go in the right directions is also observed for the 
other properties. The graphs in Fig. 1 emphasize the qualitative importance of the 
changes imposed on the behaviour of the 3-21G atomic orbitals of F -  after a single 
iteration. In the case of the ls orbital, the momentum space treatment corrects the 
peculiar behaviour near the origin [16] and, even though it is not apparent on the 
graph, forces the right [p]-4 asymptotic decay for q51s(p) at large momentum [12, 
19, 27]. This correction is responsible for the strong energy improvement in both 
the ~1, and ET energies. In the case of the 2s one-electron state, the amplitude of 
~bz,(p), too low near the origin, is enhanced, but slightly in excess. The most 
dramatic improvement is shown in the case of the qSep(p ) orbital which after one 
iteration has its maximum not only enlarged but also shifted towards low mo- 
mentum. As can be seen in the graphs, the behaviour of the three functions is much 
affected and always in the right direction. These graphs also show how valuable 
momentum space is to assess the quality of the valence orbitals of which essential 
features are concentrated in a rather limited interval of momentum values around 
the origin, while in direct space they tail off exponentially over large distances 
[28, 29]. 

Table 3. Convergence towards the HF  limits of the atomic orbital properties (in a.u.) of Li - .  The trial functions 
are expressed in the STO-3G basis set, and to help comparison near HF  limit results [23, 24] are reported 

ls  2s 

L i -  iteration ( p -  I ) ekin e ( p -  1 ) ekin e ET Vi 

0 0.66059 7.0260 - 1.9686 3.1212 0.80691 0.10225 - 7 . 2 1 3 3  - 1 . 9 2 0 9  
1 0.66444 6.9447 - 2 . 2 3 0 6  4.3811 0.31916 0.01621 - 7 . 4 0 9 6  --2.0201 
2 0.65965 7.1083 --2.2898 5.2055 0.23075 -0 .00318  - 7 . 4 2 5 5  - 2 . 0 1 1 8  
3 0.65765 7.1801 - 2 . 3 1 6 2  5.8646 0.20442 -0 .01210  ~7 .4282 - 2 . 0 0 6 0  
4 0.65690 7.2079 - 2 . 3 1 9 7  6.0597 0.20300 -0 .01329  - 7 . 4 2 8 2  - 2 . 0 0 2 4  
5 0.65663 7.2188 - 2 . 3 2 1 3  6.2448 0.20248 --0.01393 - 7 . 4 2 8 2  - 2 . 0 0 1 0  
6 0.65651 7.2237 - 2 . 3 2 1 7  6.2849 0.20230 --0.01424 - 7 . 4 2 8 2  - 2 . 0 0 0 3  
7 0.65649 7.2244 - 2 . 3 2 1 9  6.3613 0.20223 -0 .01438  - 7 . 4 2 8 2  -2 .0001  
8 0.65648 7.2248 --2.3223 6.3622 0.20219 - 0 . 0 1 4 4 0  --7.4282 - 2 . 0 0 0 0  

[23] 0.65644 7.2261 - 2 . 3 2 2 8  6.4347 0.20216 -0 .01453  --7.4282 - 2 . 0 0 0 0  
[24] - 7.2261 - 2 . 3 2 2 8  - 0.20215 - 0 . 0 1 4 5 4  - 7 . 4 2 8 2  - 2 . 0 0 0 0  
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F i g .  2 .  C o n v e r g e n c e  t o w a r d s  t h e  n e a r  H F  l i m i t s  [ 2 3 ]  ( r e p r e s e n t e d  b y  dotted lines) o f  t h e  e n e r g e t i c a l  

p r o p e r t i e s  ( in a.u.)  o f  F - .  T h e  trial  f u n c t i o n s  are  e x p r e s s e d  in t h e  S T O - 3 G  b a s i s  s e t  

The orbital characteristics of Li-  and F -  at each iteration of the momentum- 
space SCF scheme starting with the STO-3G basis are reported in Tables 3 and 4, 
respectively. The evolutions during the iterations of the energy parameters els, t2s, 
e2p, Er and the Virial ratio for F -  are plotted in Fig. 2. It is obvious that the 
corrections are stable, follow a monotonous  convergence pattern and the largest 
changes occur during the first four iterations. 

4 Conclusions 

The momentum space SCF method tested on Li-  and F -  seems to be well suited to 
deal with anions. The convergence towards the HF limit is stable and monotonous,  
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and a first iteration already improves significantly the quality of the orbitals 
initially represented with usual Gaussian basis sets (such as the minimal STO-3G 
or the diffuse double-zeta 3-21 + G). Furthermore, the special view the momentum 
space provides on orbitals, especially the valence functions, is another strong 
motivation for developing an algorithm to calculate the electronic structure of 
atoms and molecules directly in momentum space. Work is now in progress to 
apply the momentum-space SCF method to bound molecular anions. 
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